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PREFACE 
Portions of the following report were originated under studies coli- 

ducted for the Department of Amiy Ordnance Corps under Contract 
No. DA-04-495-0rd 18. Such studies are now conducted for the 
National Aeronautics and Space Administration under Contract No. 
NASW-6. 
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ABSTRACT 

The results of investigations into certain areas of 
curve fitting are presented. The derivation of the normal 
equations i n  two dimensions is discussed and an easily 

generalizable way of viewing the structure of the normal 
equations i s  given. A new method is presented for the 
approximate separation of variables i n  an empirically 
determined function. The need for double precision calcu- 
lation i s  explained, and the routines for curve fitting which 
are available at the Jet Propulsion Laboratory are 
summarized. 

1. INTRODUCTION 

When least-squares  curve f i t s  of orders greater  than 4 began to b e  run on the general  

purpose digital  computer, i t  was  noticed tha t  the fi ts ,  far from gett ing better as the  order of the 

polynomial increased, were actually get t ing worse. T h i s  led to an  investigation of the ana lys i s  

of curve fi t t ing and to the writing of a double-precision curve-fitting routine to handle curve f i t s  

up to orders  as great as 10 or 11. Later ,  the  need arose for routines to f i t  polynomials in two or 

three dimensions, and for a routine to separate var iables  in two or three dimensions. 

The purpose of t h i s  Report i s  to make known the  resu l t s  of invest igat ions into the 

problems of multidimensional curve fi t t ing and separation of variables,  and to outline the  nature 
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of the  programs avai lable  for doing these  kinds of work. 

In particular, th i s  Report: 

1. Summarizes portions of the curve-fitting theory. 

2. P r e s e n t s  an easi ly  generalizable method of set t ing up normal equations in 
any number of dimensions. 

3. P r e s e n t s  some new resu l t s  on separation of variables.  

4. Explains  the need for double-precision calculation. 

5. Summarizes the avai lable  routines for curve fitting. 

Poge 2 



Jet Propulsion Laboratory Memorandum No. 30-1 

II. THE GENERAL CURVE-FITTING PROBLEM 

There are  two common motivations for doing curve fitting. In some c a s e s  a set of da ta  

may be known to contain observational errors of a random type, and i t  i s  desired to find the most 

l ikely values  of the observed function. By making the  assumptions that the  underlying trend i s  

an  nrth-order polynomial and that the noise  is uncorrelated and normally distributed with mean 

zero, one i s  led directly to the standard normal equat ions of the least-squares  process  ( s e e  

Ref.  1). A proof of th i s  statement i s  contained in Appendix A. 

In other c a s e s  a function may be known exact ly  on a discreet  point set (or with sufficient 

precision so that one can consider i t  known exactly), and  i t  may be desired to find a calculational 

algorithm to approximate the original function. In t h i s  c a s e  i t  may be desirable  to u s e  some 

measure of error other than that  of the sum of the squares  of the point wise  errors, such as  the 

magnitude of the largest  absolute  deviation. 

hard to handle, however, and s ince  the least-squares measure of error leads to very simple 

analyt ic  resul ts ,  i t  i s  usually used. 

These  other measures  of error are generally rather 

A. Derivation of the Normal Equations 

The ordinary one-dimensional least-squares a n a l y s i s  with powers of z is well-known 

(Ref. 31, and there is no need to repeat i t  here. The general a n a l y s i s  in n dimensions, although 
i t  p resents  no  difficulty, is seldom s e e n  in the literature. The notation of two dimensions will be 

used  to present  this theory s ince  it contains  enough structure to make c lear  the extension to n 

dimensions and because the notation necessary in n dimensions i s  so  complex as to obscure the 
argument. 

W e  wish to determine the ai in the polynomial 

’For examples of approximations made using the magnitude of the largest error a s  a criterion of 
goodness of fit” see Ref. 2. .6 
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in such a way that E is a minimum where: 

n n 

The conditions which have to be sat isf ied for a minimum are: 

- = o  v = 0, e.. , m 
2 E  

But 

So that the normal equations become 

or 

A X  = b 
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where 

A =  

\? 

and 

b =  

Pmge 5 
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6. A General Method for Writing the Normal Equations 

An easily generalizable way of looking a t  the structure of the matrix A may be s e e n  by 

defining an  exponent vector to be the set of integers (A, p) which appear  as exponents of x and 

y in a s ingle  term of the approximating polynomial. NOW l e t  the polynomial be 

so  that the exponent vectors are  

Kow form the addition table  of the exponent vectors  a s  follows: 
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where ( u ,  v ) ~ [  - (A, t A,, pk + p l ) .  Now let 

1 q y ;  - (u,  o) 
i 

symbolize the operation of replacing the pair ( u ,  o) by the number 

Then, making the substitution 

k = 1, e-. , m 

the elements of the addition table become exactly the elements of the matrix A for the chosen 

polynomial. For example, l e t  P ( z , y )  = a,, + u p 2  + a2x y . Then the exponent vectors are 3 5  

and the addition table i s  as follows: 

3,5 

375 

5,5 

6,lO 
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Making the replacement 

in the body of the table g ives  

n 

c 22 

1 

2 c " i  
i 

6 5  1 xi yi 
3 5  1 "i yi 

i i 

3 5  1 xi Yi 
i 

6 10 c xi yi 

i 

which is exactly the array of the matrix A for the given Polynomial. 

Now it is easy to s e e  how generalization to three dimensions occurs. The addition table 

looks like the following: 
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where (u, v ,  W)kl = (hk + A,, pk + pp vk + V> and the necessary replacement is: 

Note that in the one-dimensional case the exponent vectors are just single integers and 

the replacement becomes: 

i 

For the special one-dimensional c a s e  where P(z) = a,, + + amxm the addition table is: 

m 

0 

m m+l 

m . . .  

. . .  m 

. . .  m+l 

. m+2 

m+2 - - - 2m 
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which becomes after replacement: 

n m 1 " i  . . .  
I 

. . .  1 r;+l 

I 

which i s  the familiar matrix of  the normal equations.  

C. Orthogonal Polynomials 

Suppose we have a set of polynomials Pi (x) (i == 0, , m) with the property that pi  (x) i s  

a polynomial in x of degree i with a non-zero leading coefficient. Since any  polynomial of degree 

m i s  uniquely representable as a l inear  combination copo(x) + 
problem of approximating an  empirically determined function F ( x >  i = 1, 

combination of the Pi(x). In t h i s  c a s e  the sum of squares  of the errors i s  

+ cmpm (x). we can consider the 

, n by such a l inear 

n " 

i = l  

and taking partial derivatives with respect  to the c v  yie lds  the normal equat ions 

n 
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The  normal matrix is: 

where (P,,P,) i s  the inner product 

i =  1 

If a set of polynomials can be obtained with the property that (P,,P,) = 0 if p 4 I/, then only the  

diagonal terms will remain in  the normal matrix and the solution to the system will be: 

u = OI , m 

Such a set of polynomials i s  called an  orthogonal set with respec t  to  the inner product 
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and can be easi ly  generated us ing  the following recursion scheme: 

where 

A proof that  these  polynomials have the property that (P,,P,) = 0 if ,U f z/ i s  contained 

in Appendix B. 

T h e  advantages of orthogonal polynomials a re  as follows: 

1. There i s  no accuracy problem in obtaining either t h e  orthogonal polynomials or the 

coeff ic ients  of the orthogonal polynomials for a particular fit.  

2. Once having obtained the polynomials, they may be used to f i t  many different functions 

as long as  the x i  remain fixed. 
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3. The  F- tes t  i s  a t e s t  for determining what order polynomial should be used to  fit a 

given s e t  of data. T h e  t e s t  cons is t s  of calculating 

for k = 1, 2, 

populations with the same variance (Ref. 4). When the null hypothesis  i s  accepted,  the smaller 

order f i t  is accepted.  Using orthogonal polynomials, the reduction in u2 can be calculated with- 

and tes t ing  the null hypothesis tha t  a i  and un+, 2 are  sample var iances  from 

out doing the fit a l l  over again (Ref.'4). If the Pk are orthogonal polynomials, the values  of ak 2 

for increasing k can be calculated using a recursion formula, while, if the Pk are powers of z, the 

whole operation must be repeated, or a complicated computer program must be developed. 

T h e  disadvantages of orthogonal polynomials are a s  follows: 

1. If a n  approximation algorithm is being sought, the needed quantit ies are the coef- 

f ic ien ts  of the powers of z, s ince  the powers of z are much eas ie r  to compute than the values  of 

the orthogonal polynomials. But in  trying to recover the coefficients of the powers of z, the same 

accuracy problem i s  encountered which a r i ses  in trying to solve the normal equations. 

2. In using orthogonal polynomials one is forced to u s e  al l  powers of x l e s s  than or equal 

to the degree of the fit. T h i s  may be undesireable, e.g., only the odd powers may be wanted. 

3. There are s ta tements  in  the literature that orthogonal polynomials can be extended to 

more than one dimension, but l i t t le  s e e m s  to have been done along these  l ines.  

For further de ta i l s  on the  u s e  of orthogonal polynomials s e e  Ref. 5. 
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Ill. A NEW TECHNIQUE FOR THE APPROXIMATE SEPARATION OF VARIABLES 

T h e  following analysis  was  done because of a suspicion that certain functions of two 

var iables  which a r i se  in the approximation of missile-guidance parameters were very nearly 

separable.  Separable i s  used here to mean that the function f(x,y) can be written as the product 

of a function of x only by a function of y only. 

I t  was fel t  that  perhaps, for the c a s e s  in which a function was  nearly separable,  a much 

better fit to the da ta  might be obtained by fi t t ing flh) and f2(x) separately than by fi t t ing 

/(x,y) directly. 

Given an empirically determined function f(x,y) which i s  suspected of being nearly 

separable  in the s e n s e  that f(x,y) = f1 (x) /2 (y) + E (x,y) where the E (x,y) are  all very small 

compared to the f(x,y).  Suppose a l so  that the function f i s  specif ied only on the space  

(xi,?) i = 1, 
1.e.. 

, m,  1 = 1, n, S O  that  f(x. y.) = a . . .  L e t  A be the matrix of function values,  
1' I 11 

The problem of separat ing f(x,y) then reduces to the problem of finding two vectors 

X = (xl, , x m )  and Y = (yl ,  e - .  , y,) such that their  outer product X Y i s  as close as possible  

to the matrix A in the s e n s e  that i t  minimizes some norm 1 1  A - X Y I 1 .  For the definition of an 

abstract  norm, see Ref.  6. 

T 

T 

A. The Least-Squares or Euclidean Norm 

A standard norm i s  the Eucl idean Norm: 
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In order to make E,  a minimum i t s  partials with respect  to the xi and yi must be set  to 

zero. Notice, however, that 

( . X T )  (f Y )  = X T Y  

for all constants  a. T h i s  means that  one  element of ei ther  X or Y can  be fixed arbitrarily at any 

non-zero value. Let us ,  for concreteness  f ix  z1 = 1. Then the conditions to be met for minimum 

E ,  are 

= o  i = 2, e - -  , m 
a E 1  

a,. 

Equat ions (1) reduce immediately to 

U i l Y l  + + a .  y rn n 

2 
x i  = 

+ Y n  y 1 2  + .-a 

y .  = 
I 2 

x12 + + 

i = 2, - - -  , m 

, n  j = 1, ... 

There d o e s  not appear to be any straightforward way to solve Equat ions (21, but i t  i s  poss ib le  to 

u s e  them as iteration equations to obtain convergence once a good g u e s s  a t  the  solution i s  made. 
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B. T h e  LogSquarc Norm 

An alternative norm which leads  to a simpler computational scheme is the norm E , .  

x . y .  
1IA - XTYI( = 1 i j  log2  (q) = E ,  

The problem of minimizing E ,  can be greatly simplified by making the following substitutions: 

ui = log x i  

v i = log yi 

bii = l o g a . .  t1 

With these substitutions we have: 

E ,  = 1 ( u i  + vi - bii) 2 

i j  

Taking partial derivatives of E ,  with respect to U A  and up yields: 

U A  = B A ~  - V 

v = B o P - U  P 

where 

1 
= C 

i 

Page 16 



~~ ~~ ~ 

Jet Propulsion Laboratory Memorandum No. 30-1 

But s ince  w 1  = 1, u1 = log w 1  = 0, and by Eq. (3a) with h = 1 

V = B,,  

Knowing V, Eq. (3a) y i e lds  

u A  = %o - BlO 

Averaging the ux gives 

where 

Knowing U, Eq. (3b) yields  

v = B o p  - B + B,, 
P (4b) 

TO see that  Eqs. (4a) and  (4b) actually represent a solution to the system 3a and 3b notice that 

the average of the uA as  calculated by Eq. (4a) is B - B,, and that the average of the up as  given 

by Eq. (4b) is B,,. Substituting these values  of U and V along with the values  of uA and up from 

Eqs. (4a) and (4b) into Eqs. (3a) and (3b) gives 

Bo, - B + B 1 ,  = Bop - + BlO (5b) 

which are identit ies.  
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The algorithm for computing the xi and y .  from the a.. is:  I ' I  

1. Take  logarithms of the a . .  to get the b . .  'I 'I 

2. Average the rows and columns of the b . .  matrix to get  the B x o  and the Bop 

3. Calculate  the u i  = B i o  - B,,  

4. Calculate  the average of the ui to get  U 

5. Calculate  the u .  = B - U I 01 

6. Take anti-logs of the ui and v .  to get  the xi and the y.  I I 

' I  

C. Comparison of Norms 

I t  seems natural a t  t h i s  point to look for some relationship between the log-square and 

least-square norms. Notice that if the product representation i s  fairly accurate ,  the products 

x. y. will be close to the matrix elements a . .  so  that the  ratio x.y. l a . .  will he c lose  to one. But 

t h i s  a l lows the writing of 
' I  ' I  ' I ' I  

x .y . 
log 2 - ' 1  - - log2 (1 + p) 

a . .  
' I  

where 

x .y . 
' I  

a.. 
' I  

P = -  - 1  

(6) 

and is l e s s  than 1 in absolute  value. 

Expanding the logarithm gives 

or 
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where 6 < 1 a r i s e s  from truncating the power ser ies  for log2. ( 1  + p). Now l e t  

a . .  = a + V . .  
' I  ' I  

and 

2 B = a  

Eq. (6) can be written 

where 

1 - e p  
1y.. = 
'I (1+ &)2 

and 

e = l - i - p + - p  11 5 2 - 137 p3 + ... 
12 6 180 

Notice that if the approximation is good so that p i s  small  and that if there is not  much variation 

i n  the a.. so tha t  V.. is small compared to a, then W . .  i s  close to  1. Since W.. i s  the  weighting 

factor which i t  would be necessary to include in the  least-squares  solution to get a resul t  ident ical  

with t h e  log-square method, i t  is s e e n  that the  two methods will  yield very similar resu l t s  for small  

p and V... 

' I  ' I  ' I  ' I  

' I  
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D. Extension to Three Dimensions 

Both the least-square and the log-square norms generalize eas i ly  to n dimensions. In the 

c a s e  of three dimensions, the norms generalize to: 

i = l,Z 
j = 1,m 
k = 1,n 

i jk  

The iterative equations for the least-squares solution become: 

with 

ui = log x .  

v i = log y j  

Wk = log Zk 

b i j k  = log ai jk  
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and with 

BXoo = 

1 
B = -1 lmn bijk 

i jk  

The log-square solution becomes: 

'Ih = %oo - B l O O  

P = B o p 0  - BO10 

W Y  = BOOv + B1oo + Bo10 - 2 B  

E. Comparisons Between Separation and Two-Dimensional Curve Fitting 

Table  1 exhibits the s e t  of data  which was used to generate the  f i t s  in Tab le s  2 through 

5. The function va lues  in the body of the table are the values  a t  a point whose x-coordinate i s  

the number of x i  a t  the left  of the entry and whose y-coordinate i s  the number y. above the entry. 

For example F(0.6,l.S) = 965.18. 
I 
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Table 2 shows the resu l t s  of a log-square f i t  to the  data of T a b l e  1. The wi  and 2 .  are  
I 

the separat ing vectors, and  the elements  in the body of the table  are  the residuals  

w .  z - F (xi ,yi). The quantity E i s  the sum of the squares  of the residuals .  r i  
Table 3 i s  identical  in format to Table 2 and shows the resu l t s  of a least-squares  f i t  to 

the data .  Notice that there i s  very l i t t le  difference between the  log-square residuals  and the 

least-squares  residuals.  The  least-squares  solution must be better than the log-square solution in 

the s e n s e  that  E i s  smaller, s ince  the least-squares  solution minimizes E whereas  the log-square 

solution minimizes a different norm. But the log-square solution i s  actual ly  better than the least-  

squares  solution for th i s  s e t  of da ta  in the minimax s e n s e  s ince  the greatest  absolute  residual in 

the log-square case  i s  2.98 compared to 3.37 for the least-squares  c a s e .  

Tables 4 and 5 compare the approximation algorithm obtained by fitting polynomials to 

the separat ing vectors of the least-squares  solution with the algorithm obtained by doing a 

standard two-dimensional least-squares  fit to the original data.  In both c a s e s  the approximating 

equations themselves are s ta ted  a t  the top of the table,  the  body of the  table  c o n s i s t s  of the 

residuals  F ( x . y . )  - F ( x i , y . ) ,  and E i s  the sum of the squares  of the residuals .  Note that for th i s  

set of da ta  the  product separation has a much smaller E than the  two-dimensional least-squares  

fi t  even though it contains  the same number (7) of parameters. 

- 

' I  I 

P a g e  22 



Jet Propulsion Laboratory Memorandum No. 30-1 

IV. THE ACCURACY PROBLEM 

One of the first  phenomena not iced when working with the  s tandard least-squares  process  

and an  %decimal digit  computing machine i s  that i t  begins to give obviously erroneous answers  as 

the  degree of the approximating polynomial approaches six.  T h i s  is a discouraging phenomenon 

because  i t  s eems  at first  glance that if the function values  are  known to, say,  four figures the 

coefficients determined from them should a l s o  be good to four figures. There a r e  good reasons,  

however, why t h i s  should not be true. 

A. Comparison of the Normal and Hilbert Matrices 

If all the powers up to  rn are  included in a one-dimensional fit,  and if t h e  xi are  fairly 

evenly spaced  and normalized to the unit interval, a revealing approximation can be made to the 

resul t ing normal matrix. In t h i s  c a s e  

i = l  

and  the normal matrix then looks l ike 

N 

N 

2 
- 

N 
m 
- 

N 
2 
- 

N 

3 
- 

N 

m +1 

. . .  N 
3 
- 

. . .  R; 

4 
- 

- ...  N 

m +2 

1 
N -  

P + 1  

N 
m + 1  

N 

m + 2  

N 

2 m  + 1  

But t h i s  matrix, with the N removed, i s  j u s t  a finite segment of the  well-known Hilbert  

matrix which is notoriously i l l  conditioned (see Ref. 7). 
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With single precision arithmetic (8-decimal digits) ,  matr ices  of th i s  type of order greater 

than five cannot in general  be inverted with accuracies  of more than two or three digits.  With 

double precision (17 or 18 significant digits)  inverses  accurate  to 2 or 3 d ig i t s  can be obtained 

for orders up to about 11. T h i s  means  that,  us ing single-precision arithmetic, curve f i t s  of order 

6 cannot be expected to improve on f i t s  of order 5.  Using double precision, f i t s  of order 12 cannot 

be expected to improve on f i t s  of order 11. T h i s  breakdown of the curve fi t t ing process  i s  i l lus- 

trated by Figs. 1 through 4. These Figures  give the error curves  for various polynomial f i t s  to the  

set of da ta  of Table  6. Notice that the  sum of the  squares  of the errors  (E) i s  larger for the  6th- 

order single-precision f i t  than it i s  for the 5th-order single-precision fit,  and that  the  same thing 

happens in going from order 10 to  order 11 in the double precision c a s e .  It can be concluded that 

fits of order 6 or greater should a lways  u s e  double-precision ari thmetic and f i t s  of order 11 or 

greater cannot be done even with double-precision methods. 

6. Empirically Determined Guides for Estimating the Number of Expected Coefficients 

If t h e  exponents 1 through m are  not a l l  present  in the  approximating polynomial or if 

the  polynomial i s  in  several  variables,  then no simple model with known inverses  i s  available,  

and i t  is necessary to rely on experience to determine how many accurate  coeff ic ients  may be 

obtained. Fortunately, experience i s  quite consistent,  and fairly re l iable  rules  can be formulated. 

These  ru les  can be summarized as follows: 

1. I t  i s  the order of the normal matrix that  matters,  not the order of the  approxi- 

mating polynomial. Therefore, i t  i s  necessary to think of the number of coefficients which can  

be obtained rather than the  order of the  polynomial. 

2. With s ingle  precision (8-decimal digits)  in one-dimension, approximately 6 

“good” coefficients can be expected. (By good i s  meant that  E for the  fi t  will b e  smaller than 

E for the  f i t  with one less coefficient). 

3. The  ratio of precis ions in the arithmetic mult ipl ies  the number of expected 

good coefficients (i.e., double precision can be expected to give twice as many good coeff ic ients  

as single  precision). 

4. The number of dimensions i s  a power on the number of expected good 

3 
coeff ic ients  (e.g., the  number of expected good coefficients in a s ingle  precision three- 

dimensional fit i s  6 and the number of expected good coeff ic ients  in a double precision two-, 
2 dimensional fit i s  ( 2  x 6 )  . 

Normalization of a l l  the  var iables  either to the interval (0 , l )  or to the interval (-1,l) 

should a lways  be done before curve fitting. T h i s  normalization c a u s e s  the  normal matrix to b e  a 

l i t t le  further from singular and the result ing coefficients to be near  1. 
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V. CURVE FITTING ROUTINES AVAILABLE AT THE 
JET PROPULSION LABORATORY 

T h e  Datatron least-squares  program accepts  up to 200 fixed decimal values  for the 

dependent and independent variables. T h e s e  numbers a re  not destroyed by the operation of the 

program, so they may be re-used without being re-entered. T h e  user  spec i f i e s  the order fi t  

desired by entering the order in a fixed memory location and chooses  single- or double-precision 

arithmetic by the se t t ing  of a switch on the computer console. The  program will not f i t  poly- 

nomials of order greater than 6 when operating in the  single-precision mode and will not fit poly- 

nomials of order greater than 12 under any conditions. One of the advantages of t h i s  routine is 

that if a single-precision f i t  is done and turns out not to be sufficiently accurate,  the switch on 

the console can be flipped down, putting the computer in double-precision mode, and the problem 

can be immediately re-run to obtain the double precision fi t  us ing 24 z,y pairs.  T h i s  routine takes 

3.5 min for a fourth order single-precision fit and 10.5 min for a double-precision fourth order fit. 

Sixth order f i t s  take 6.5 min and 16 min for single- and double-precision, respectively. A twelfth 

order fi t  which must be done double-precision t akes  45 min. 

Also avai lable  is a separation program for the 704. T h i s  program accep t s  a s  input a 

matrix aii, i = 1, m, j = 1, n. The aij must all be positive. T h e  user  h a s  the option of obtaining 

either a log-square separation or both the log-square and least-squares  solutions. H i s  choice i s  

indicated by a control card which i s  read in with the data  cards  containing the a... In either case  

the output consisls uf &e separating vectors ai and si, the errcr matrix (G.. - z . t i  .), and the error 
' I  

' I  ' I 

E ,  = 1 (u.. - U.U. ij L l  8 1 )  

In the  event that  both log-square and least-squares solut ions are taken, i t  will be noticed that 

E is larger for the log-square solution than for the least-squares  solution. T h e  reason is that the 

log-square code minimizes 

E ,  = 1 i j  log2 (:) 
not 

E ,  = 1 (a i j  - U.U. 
ij ' 1 1 ,  
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but it i s  E 

than or equal to 20 x 20. I t  requires approximately 15 s e c  to fi t  a 7 x 13 matrix using the log- 

square norm and another 30 s e c  to calculate a least-squares  solution. 

which i s  l i s ted  for both solut ions.  T h i s  code will f i t  any matrix of dimensions less 

The  two-dimensional least-squares  program written a t  JPL for the 704 f i t s  a polynomial 

+ a m x X m y p m  to a s e t  of da ta  x i ,  y., F.. i = 1, rn, j = 1, n of the form P ( x , y )  = a o ~ x o y L o  t 

where F.. = F ( z i , y . ) .  T h i s  i s  a single-precision program, s o  a t  most 36 coefficients can be 

expected from a f i t  us ing th i s  program. There are no restr ic t ions on the choice of the A i ,  pi 
pairs.  The  output from this  program cons is t s  of a l is t ing of the A, ,LL pai rs  with the assoc ia ted  

coeff ic ients  beside them, a l is t ing of the matrix of the va lues  of P ( x , y )  and F ( x , y )  - P ( x , y ) ,  and 

the sum of the squares  of the errors E .  The function va lues  of the  da ta  for t h i s  program are  

restricted to lie on a la t t ice  of dimensions l e s s  than or equal to 20 x 20 and to determine the 

coeff ic ients  of a polynomial with 10 coefficients over t h i s  full s p a c e  would require approximately 

40 s e c .  

I ' I  

' I  I 

The  three-dimensional least-squares  program written a t  JPL for the 704 f i t s  a polynomial 

of the form P ( x , y , z )  = a o x x o y p o z u o  + 
i = 1, 1 ,  j = 1, m, k = 1, n where F. .  *=  F ( x i , y . , z k ) .  Space and time limitations impose a 

restriction to 60 coefficients when using th i s  program. There are  no restr ic t ions on the choice of 

the ( A ,  p, V) tr iplets.  The output of th i s  routine c o n s i s t s  of a l is t ing of the ( A ,  p, V) t r iplets  

with the associated coefficients beside them, a l i s t ing  of the matrix of the errors, and the sum of 

the squares  of the errors E .  T h e  data  points for th i s  program are  required to l i e  on a la t t ice  

5 x 5 x 13. To determine 20 coefficients over such a la t t ice  t a k e s  approximately 3 min. 

+ a x h m  p m z u m  to a s e t  of da ta  x i ,  y . ,  z k ,  F i i k ,  m y  I 

' I  k 1 

A general least-squares curve f i t  routine for multidimensional work i s  now being written. 

T h i s  routine will f i t  polynomials in either two or three dimensions with either s ingle  or double 

precision and will carry along a weighting factor IC/ so  as  to minimize TIT' (P - F ) 2  where U' 1 0 .  
The points  used do not have to be equally spaced or to l i e  on a la t t ice ,  and any combination of 

exponents may be used.  
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VI. CONCLUSIONS 

The techniques d iscussed  have been useful in curve-fitting ana lys i s  using a general 

purpose digital computer. T h e  exponent-addition-table way of looking a t  the structure of the 

normal matrix greatly simplified the coding of two- and three-dimensional curve-fitting programs 

and caused the resul t ing programs to be much more flexible than they would otherwise have been. 

The separation theory has supplied a rather simple algorithm for performing a calculation which 

had been in the p a s t  rather cumbersome. All  of the routines written as a resul t  of these  investi-  

gat ions have been extensively used already and will probably continue to be heavily used in the 

future . 
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Table 1. Original Data for Separation Comparisons 

0.0 

398.11 

285.46 

218.72 

193.93 

198.65 

230.37 

282.42 

337.32 

399.17 

456.68 

492.98 

510.40 

499.03 

0.5 

876.42 

623.69 

478.46 

423.03 

439.45 

505.81 

617.43 

741.93 

873.57 

992.52 

1078.86 

1121.69 

1 093.78 

1 .o 

1198.61 

857.23 

655.46 

579.42 

598.22 

697.89 

843.29 

1018.05 

1199.85 

1360.33 

1480.71 

1536.08 

1497.9 1 

Y 

1.5 

1376.01 

979.39 

752.87 

661.64 

687.30 

797.31 

965.18 

1168.64 

1374.65 

1558.82 

1697.87 

1758.27 

17 19.26 

2.0 

1400.18 

998.07 

766.19 

673.95 

701.42 

812.02 

982.91 

1189.53 

1398.63 

1588.73 

1728.12 

1 79 0.82 

1751.23 

2.5 

1275.19 

908.13 

697.63 

614.82 

636.09 

738.42 

895.45 

1082.1 1 

1275.54 

1447.85 

1573.83 

1631.86 

1594.80 

3.0 

1000.7 1 

712.92 

546.11 

483.82 

502.22 

580.01 

702.19 

848.04 

999.24 

1135.03 

1235.16 

1279.01 

1249.31 
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Table 2. Log-Square Separation for Data of Table 1 

( E  = 139.08) 

W 

1 .ooooo 

0.71328 

0.54705 

0.48300 

0.50009 

0.57944 

0.70353 

0.84830 

0.99959 

1.13594 

1.23446 

1.27972 

1.25006 

399.40 

1.29 

-0.57 

-0.23 

- 1.02 

1.08 

1.06 

- 1.43 

1 S O  

0.07 

-2.98 

0.06 

0.72 

0.25 

875.25 

-1.17 

0.61 

0.34 

-0.29 

- 1.74 

1.34 

- 1.66 

0.54 

1.32 

1.71 

1.61 

- 1.61 

0.34 

1199.51 

0.90 

-1.64 

0.72 

-0.06 

1.63 

-2.85 

0.60 

-0.51 

- 0.84 

2.24 

0.03 

- 1.04 

1.55 

Z 

1374.40 

-1.61 

0.95 

-1.01 

2.19 

0.02 

-0.93 

1.76 

-2.74 

-0.81 

2.42 

-1.22 

0.59 

-1.17 

1399.75 

- 0.43 

0.34 

-0.47 

2.12 

- 1.42 

-0.95 

1.86 

-2.13 

0.54 

1.30 

-0.19 

0.47 

-1.46 

1274.44 

-0.75 

0.9 1 

-0.45 

0.73 

1.25 

0.04 

1.16 

-1.00 

- 1.62 

-0.16 

-0.58 

-0.92 

-1.67 

1000.11 

-0.60 

0.44 

1 .oo 

-0.77 

-2.08 

-0.50 

1.43 

0.35 

0.47 

i .04 

-0.56 

0.86 

0.89 
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Table 3. Least-Squares Separation for Data of Table 1 

(E = 104.80) 

W 

1 .ooooo 

0.7 1278 

0.54687 

0.48218 

0.50005 

0.57974 

0.79248 

0.84875 

0.99936 

1.13444 

1.23413 

1.27931 

1 .24982 

399.58 

1.48 

- 0.64 

-0.20 

-1.26 

1.16 

1.28 

- 1.72 

1.83 

0.16 

-3.37 

0.16 

0.79 

0.38 

875.40 

-1.02 

0.28 

0.27 

-0.94 

- 1.79 

1.69 

-2.48 

1.06 

1.27 

0.56 

1.49 

-1.78 

0.31 

119.82 

1.21 

-2.01 

0.69 

-0.89 

1.75 

-2.30 

-0.43 

0.30 

- 0.79 

0.80 

0.03 

-1.13 

1.66 

Z 

1375.15 

-0.86 

0.79 

-0.84 

1.43 

0.34 

-0.08 

0.84 

- 1.48 

-0.38 

1.20 

-0.75 

0.98 

-0.56 

~ 

1400.35 

0.17 

0.07 

-0.38 

1.26 

-1.17 

-0.18 

0.81 

-0.99 

0.82 

-0.12 

0.09 

0.66 

- 1.04 

1275.41 

0.22 

0.96 

-0.14 

0.15 

1.69 

0.99 

0.50 

0.40 

-0.94 

-0.97 

0.20 

-0.21 

-0.76 

1000.22 

-0.49 

0.02 

0.88 

- 1.54 

-2.06 

-0.14 

0.45 

0.90 

0.34 

-0.34 

-0.75 

0.59 

0.79 

Poge 30 



Jet Propulsion Laboratory Memorandum No. 30-1 

n 
X 
Y 

lu: 
II 

NA 

P 
x 

h 

Y 
X 

G 

X 

cy 
0 
0 
0 
9 - 

h 
Qo 

2 
h 
0 

03 
h * w 
0 
v! 

w 
cy 
cy 
03 

0 
s 

cy 
h 
O. m 
2 

0 
h a 
v! 
0 

* * 
cy 
0 

0 
h 

0. 
0 
O. w 
0 
09 

Page 31 



Memorandum No. 30- 1 Jet  Propulsion Laboratory 

Table 5. Two-Dimensional Curve F i t  for Data of Table 1 

(E = 2.334.106) 

F(x,y) = 283.26 + 937.66~ - 651.36~ - 1 6 8 . 9 2 ~ ~  + 9 0 8 . 3 1 ~ ~  - 2 6 0 . 1 4 ~ ~  i 2 3 5 . 2 7 ~ ~ ~  

X i  

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

0 .o 

- 114.84 

-58.24 

-29.39 

- 24.32 

-30.60 

-45.71 

-62.98 

-64.93 

-55.67 

- 23.90 

47.23 

155.42 

310.57 

0.5 

- 189.36 

0.04 

102.47 

135.62 

117.44 

69.82 

-2.52 

-67.23 

- 118.56 

- 136.68 

-101.67 

-2.64 

187.66 

1 .o 

-237.83 

32.96 

187.00 

238.20 

217.42 

138.64 

37.01 

-71.11 

- 163.40 

-21 1.50 

- 196.62 

-93.87 

125.30 

' i  

1.5 

-271.58 

47.18 

221.06 

284.88 

257.03 

170.06 

50.45 

-79.53 

- 186.83 

-247.06 

-236.96 

- 122.97 

115.64 

2.0 

-282.17 

34.82 

209.14 

271.40 

241.53 

156.11 

37.98 

-88.31 

- 189.50 

-244.12 

- 220.45 

-92.51 

165.30 

2.5 

-273.66 

1 .oo 

149.02 

199.29 

175.42 

100.40 

0.62 

-98.86 

- 175.18 

-200.46 

- 149.47 

-0.60 

273.29 

3.0 

-245.74 

-57.62 

41.80 

68.98 

47.76 

-0.57 

-61 .OO 

- 112.83 

- 137.72 

- 114.92 

-24.18 

155.13 

440.26 
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Table 6. Original Data for Figs. 1 through 4 

X 

0.0300 

0.0500 

0.0700 

0.1000 

0.1200 

0.1500 

0.1700 

0.2000 

0.2200 

0.2500 

0.2700 

0.3000 

0.3200 

0.3500 

0.3700 

0.4000 

0.4200 

0.4500 

0.4700 

0.5000 

0.5200 

0.5500 

0.5700 

0.6000 

Y 

52.110 

56.206 

59.209 

62.189 

63.617 

65.808 

66.973 

68.439 

69.267 

70.449 

71.192 

72.130 

72.685 

73.558 

74.138 

74.940 

75.443 

76.181 

76.661 

77.370 

77.835 

78.526 

78.980 

79.640 
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SINGLE PRECISION I 0.8 I 

0 0 1  0 2  0.3 0 4  0 5  0.6 0.7 
X 

Fig. 1. Comparison of Single and Double Precis ion 
Curve F i t s  of Fourth Order for Data of Table 6 

Page 34 



l e t  Propulsion Laboratory Memorandum No. 30- 1 

0 8  

0 6  

0 4  

0 2  

0 

-0 2 

-0 4 

-0 6 

-0 8 

SINGLE PRECISION 
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Fig.  2. Comparison of Single and Double Precision 
Curve F i t s  of Fifth Order for Data of Table 6 
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SINGLE PRECISION I 

0 0. I 0.2 0.3 0.4 0.5 0.6 0.7 
x 

Fig. 3. Comparison of Single and Double Precision 
Curve F i t s  of Sixth Order for Data of Table 6 
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0 OE 

0.04 
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TENTH ORDER DOUBLE PRECISION 
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Fig. 4. Comparison of Tenth, Eleventh, and Twelvth 
Order Double Precision Curve Fits for Data of Table 6 
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APPENDIX A 

Least Squares and Maximum Likelihood 

Given 

1. A set of x i ,  i = 1, n 

2. An mth-order polynomial P,,, (X) 

3. The  value of u 

A s e t  of yi  h a s  been generated as  follows: 

where the Ni are independent samples of a normally distributed variable with mean zero and 

variance c . 2 .  

T h i s  data s e t  i s  now a model for a n  empirically determined set of noisy da ta  in which 

the assumption i s  made that: 

1. T h e  underlying function i s  an  mth-degree polynomial. 

2. The  noise  i s  uncorrelated random noise,  normally distributed with mean 
2 zero and variance u . 

Now suppose that we have been given m, and the exac t  va lues  of the zi and yi  and are required 

to find the  a i ,  i = 0, 

sample y i ,  i = 1, 

, m which maximize the likelihood of our sample. T h e  likelihood of a 

, n where y h a s  the distribution function f is defined to be 

n 

In our c a s e  the variable which is normally distributed i s  y i  - P, ( z i )  and f i s  
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The likelihood of our sample i s  
r 

or 

Instead of maximizing L 

n 2 c [Yi - P, (Xi)] 
n 1 Log L = - n  log 0 - - log 277 - - 
2 2,2 i = l  

i s  maximized. The parameters available for maximization are D and the 

ai, i = O ,  - a * ,  rn 

Partialling on o yields 

Setting this partial equal to zero yields 

n 1 "  2 

(T ,3 i = l  
- + - 1 cyi - P,(Xi)l = 0 
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or 

which is the standard minimum variance estimator. Par t ia l l ing on the ai yields  

Sett ing these  par t ia ls  equal to zero yields  the standard noma1 equations of l ea s t  squares.  T h u s  

i t  can be seen  that under the assumptions of (1) underlying mth order polynomial and (2) uncorre- 

la ted  normally distributed noise with zero mean, the least-squares  procedure is a maximum 

likelihood procedure. 
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APPENDIX B 

Generation of Orthogonal Polynomials 

Write the recursive equations a s  follows: 

1. P-,(x) = 0 

2. Po(x)  = 1 

3. Pn+l(x)  = xP,(x) - a,P,(x) - p n - l P n - l ( x )  

The proof that it i s  possible  to choose an and ,B,-l to obtain a s e t  of orthogonal poly- 

nomials proceeds by induction. Assume that there already i s  a s e t  Po, p,, ..- , Pk of polynomials 

such that ( P p ,  P,) = 0 if p f v and look a t  

Notice that Pk + i s  already orthogonal to Pa, a < k - 1 since  

but "Pa is a polynomial of degree l e s s  than k ,  so that (Pk ,  xPa) = 0 ,  and Pa is of degree l e s s  

than k - 1, s o  that ( p k ,  Pa) = (Pk - 1, Pa) = 0. 

Therefore, a l l  that  i s  needed is to make Pk + , orthogonal to Pk and Pk - , by proper 

choice of a and p .  But 
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and 

T h e s e  equat ions have the  following solut ions 

T h u s  the induction is complete and can be carried to  the point where 

But (Pk,  Pk) = 0 implies P k ( Z i )  = 0, i = 1, -.. , n ,  and th i s  cannot occur until k = n 

s ince  it takes an nth degree polynomial to have n roots, and s ince  the orthogonal polynomials 

a re  guaranteed to be nontrivial by the fact  that  their leading coefficient is always unity. 

Th i s  ana lys i s  assumes  no special  properties of the inner product used here and can be 

carried through in an entirely analogous manner with a general inner product. 
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